Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int Immunopharmacol ; 133: 112073, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38636372

RESUMEN

BACKGROUND: Myocarditis is an important clinical issue which lacks specific treatment by now. Ivermectin (IVM) is an inhibitor of importin α/ß-mediated nuclear translocation. This study aimed to explore the therapeutic effects of IVM on acute myocarditis. METHODS: Mouse models of coxsackie B3 virus (CVB3) infection-induced myocarditis and experimental autoimmune myocarditis (EAM) were established to evaluate the effects of IVM. Cardiac functions were evaluated by echocardiography and Millar catheter. Cardiac inflammatory infiltration was assessed by histological staining. Cytometric bead array and quantitative real-time PCR were used to detect the levels of pro-inflammatory cytokines. The macrophages and their M1/M2 polarization were analyzed via flow cytometry. Protein expression and binding were detected by co-immunoprecipitation, Western blotting and histological staining. The underlying mechanism was verified in vitro using CVB3-infected RAW264.7 macrophages. Cyclic polypeptide (cTN50) was synthesized to selectively inhibit the nuclear translocation of NF-κB/p65, and CVB3-infected RAW264.7 cells were treated with cTN50. RESULTS: Increased expression of importin ß was observed in both models. IVM treatment improved cardiac functions and reduced the cardiac inflammation associated with CVB3-myocarditis and EAM. Furthermore, the pro-inflammatory cytokine (IL-1ß/IL-6/TNF-α) levels were downregulated via the inhibition of the nuclear translocation of NF-κB/p65 in macrophages. IVM and cTN50 treatment also inhibited the nuclear translocation of NF-κB/p65 and downregulated the expression of pro-inflammatory cytokines in RAW264.7 macrophages. CONCLUSIONS: Ivermectin inhibits the nuclear translocation of NF-κB/p65 and the expression of major pro-inflammatory cytokines in myocarditis. The therapeutic effects of IVM on viral and non-viral myocarditis models suggest its potential application in the treatment of acute myocarditis.


Asunto(s)
Ivermectina , Ratones Endogámicos BALB C , Miocarditis , Factor de Transcripción ReIA , Animales , Miocarditis/tratamiento farmacológico , Miocarditis/virología , Ratones , Ivermectina/uso terapéutico , Ivermectina/farmacología , Células RAW 264.7 , Masculino , Factor de Transcripción ReIA/metabolismo , Infecciones por Coxsackievirus/tratamiento farmacológico , Enterovirus Humano B/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Citocinas/metabolismo , beta Carioferinas/metabolismo , Modelos Animales de Enfermedad , Enfermedades Autoinmunes/tratamiento farmacológico , Humanos , Miocardio/patología , Miocardio/metabolismo
2.
Front Cardiovasc Med ; 9: 882027, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463742

RESUMEN

In myocarditis caused by various etiologies, activated immune cells and the immune regulatory factors released by them play important roles. But in this complex microenvironment, non-immune cells and non-cardiomyocytes in the heart, such as cardiomyocytes (CMs), cardiac fibroblasts (CFs) and endothelial cells (ECs), play the role of "sentinel", amplify inflammation, and interact with the cardiomyocytes. The complex interactions between them are rarely paid attention to. This review will re-examine the functions of CFs and ECs in the pathological conditions of myocarditis and their direct and indirect interactions with CMs, in order to have a more comprehensive understanding of the pathogenesis of myocarditis and better guide the drug development and clinical treatment of myocarditis.

3.
J Pers Med ; 11(11)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34834523

RESUMEN

BACKGROUND: Although the associations between serum lipid levels and aneurysms have been investigated in epidemiological studies, causality remains unknown. Thus, this study aimed to investigate the causal relationships of serum high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), and triglyceride (TG) levels on five types of aneurysms, using genetic variants associated with four lipid traits as instrumental variables in a Mendelian randomization (MR) analysis. METHODS: We performed two-sample Mendelian randomization (MR) analyses to evaluate the associations of HDL-C, LDL-C, TC, and TG levels with risks for five types of aneurysms and those of LDL-C- (HMGCR, NPC1L1, PCSK9, CETP, and LDLR) and TG-lowering targets (ANGPTL3 and LPL) with aneurysms. RESULTS: The sample sizes of the included studies ranged from nearly 80,000 to 410,000. We found inverse associations between genetically predicted HDL-C levels and aortic (OR = 0.74, 95% CI = 0.65-0.85) and abdominal aortic aneurysms (0.58, 0.45-0.75). A 1-SD increase in LDL-C and TC levels was associated with increased risks for aortic (1.41, 1.26-1.58 and 1.36, 1.18-1.56, respectively) and abdominal aortic aneurysms (1.82, 1.48-2.22 and 1.55, 1.25-1.93, respectively). TG levels were significantly associated with aortic (1.36, 1.18-1.56) and lower extremity artery aneurysms (2.76, 1.48-5.14), but limited to cerebral aneurysm (1.23, 1.06-1.42). Secondary analyses revealed a relationship between genetically proxied LDL-C-lowering targets and all types of aneurysms; however, the drug targets remained heterogeneous. We found a weak association between TG-lowering therapies and aortic (ANGPTL3, 0.51, 0.29-0.89) and abdominal aortic aneurysms (LPL, 0.64, 0.44-0.94). CONCLUSION: According to genetic evidence, lipid dysfunction is a causal risk factor for aneurysms. Lipid-lowering drugs may be a potential effective strategy in preventing and managing aneurysms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...